Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bioeng Transl Med ; 8(2): e10443, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36925706

RESUMEN

Psoriasis vulgaris is an inflammatory disease characterized by distinctive skin lesions and dysregulated angiogenesis. Recent research uses stem cell secretion products (CM); a set of bioactive factors with therapeutic properties that regulate several cellular processes, including tissue repair and angiogenesis. The aim of this work was to evaluate the effect of CM of Wharton's gelatin MSC (hWJCM) in a treatment based on the bioactivation of a hyaluronic acid matrix (HA hWJCM) in a psoriasiform-like dermatitis (PD) mouse model. A preclinical study was conducted on PD mice. The effect of hWJCM, Clobetasol (Clob) gold standard, HA Ctrl, and HA hWJCM was tested topically evaluating severity of PD, mice weight as well as skin, liver, and spleen appearance. Treatment with either hWJCM, HA Ctrl or HA hWJCM, resulted in significant improvement of the PD phenotype. Moreover, treatment with HA hWJCM reduced the Psoriasis Area Severity Index (PASI), aberrant angiogenesis, and discomfort associated with the disease, leading to total recovery of body weight. We suggest that the topical application of HA hWJCM can be an effective noninvasive therapeutic solution for psoriasis, in addition to other skin diseases, laying the groundwork for future studies in human patients.

2.
Mol Psychiatry ; 27(9): 3708-3718, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35705634

RESUMEN

Schizophrenia (SZ) is a complex neuropsychiatric disorder, affecting 1% of the world population. Long-standing clinical observations and molecular data have pointed to a possible vascular deficiency that could be acting synergistically with neuronal dysfunction in SZ. As SZ is a neurodevelopmental disease, the use of human-induced pluripotent stem cells (hiPSC) allows disease biology modeling while retaining the patient's unique genetic signature. Previously, we reported a VEGFA signaling impairment in SZ-hiPSC-derived neural lineages leading to decreased angiogenesis. Here, we present a functional characterization of SZ-derived brain microvascular endothelial-like cells (BEC), the counterpart of the neurovascular crosstalk, revealing an intrinsically defective blood-brain barrier (BBB) phenotype. Transcriptomic assessment of genes related to endothelial function among three control (Ctrl BEC) and five schizophrenia patients derived BEC (SZP BEC), revealed that SZP BEC have a distinctive expression pattern of angiogenic and BBB-associated genes. Functionally, SZP BEC showed a decreased angiogenic response in vitro and higher transpermeability than Ctrl BEC. Immunofluorescence staining revealed less expression and altered distribution of tight junction proteins in SZP BEC. Moreover, SZP BEC's conditioned media reduced barrier capacities in the brain microvascular endothelial cell line HCMEC/D3 and in an in vivo permeability assay in mice. Overall, our results describe an intrinsic failure of SZP BEC for proper barrier function. These findings are consistent with the hypothesis tracing schizophrenia origins to brain development and BBB dysfunction.


Asunto(s)
Células Madre Pluripotentes Inducidas , Esquizofrenia , Humanos , Animales , Ratones , Células Madre Pluripotentes Inducidas/metabolismo , Barrera Hematoencefálica/metabolismo , Esquizofrenia/metabolismo , Encéfalo , Línea Celular
3.
Int J Mol Sci ; 20(6)2019 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-30897795

RESUMEN

Gestational diabetes mellitus (GDM) is a common metabolic disorder, defined by high blood glucose levels during pregnancy, which affects foetal and post-natal development. However, the cellular and molecular mechanisms of this detrimental condition are still poorly understood. A dysregulation in circulating angiogenic trophic factors, due to a dysfunction of the feto-placental unit, has been proposed to underlie GDM. But even the detailed study of canonical pro-angiogenic factors like vascular endothelial growth factor (VEGF) or basic Fibroblast Growth Factor (bFGF) has not been able to fully explain this detrimental condition during pregnancy. Netrins are non-canonical angiogenic ligands produced by the stroma have shown to be important in placental angiogenesis. In order to address the potential role of Netrin signalling in GDM, we tested the effect of Netrin-1, the most investigated member of the family, produced by Wharton's Jelly Mesenchymal Stem Cells (WJ-MSC), on Human Umbilical Vein Endothelial Cells (HUVEC) angiogenesis. WJ-MSC and HUVEC primary cell cultures from either healthy or GDM pregnancies were exposed to physiological (5 mM) or high (25 mM) d-glucose. Our results reveal that Netrin-1 is secreted by WJ-MSC from healthy and GDM and both expression and secretion of the ligand do not change with distinct experimental glucose conditions. Noteworthy, the expression of its anti-angiogenic receptor UNC5b is reduced in GDM HUVEC compared with its expression in healthy HUVEC, accounting for an increased Netrin-1 signalling in these cells. Consistently, in healthy HUVEC, UNC5b overexpression induces cell retraction of the sprouting phenotype.


Asunto(s)
Células Endoteliales de la Vena Umbilical Humana/metabolismo , Netrina-1/metabolismo , Receptores de Superficie Celular/metabolismo , Diabetes Gestacional/genética , Diabetes Gestacional/metabolismo , Femenino , Humanos , Neovascularización Fisiológica/genética , Neovascularización Fisiológica/fisiología , Receptores de Netrina , Netrina-1/genética , Embarazo , Receptores de Superficie Celular/genética , Transducción de Señal/genética , Transducción de Señal/fisiología , Factor A de Crecimiento Endotelial Vascular/metabolismo
4.
Front Physiol ; 9: 995, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30104981

RESUMEN

Hyperbaric oxygen therapy (HBOT) is effective for the medical treatment of diverse diseases, infections, and tissue injury. In fact, in recent years there is growing evidence on the beneficial effect of HBOT on non-healing ischemic wounds. However, there is still yet discussion on how this treatment could benefit from combination with regenerative medicine strategies. Here we analyzed the effects of HBOT on three specific aspects of tissue growth, maintenance, and regeneration: (i) modulation of adult rodent (Mus musculus) intestinal stem cell turnover rates; (ii) angiogenesis dynamics during the development of the chorio-allantoic membrane (CAM) in Gallus gallus embryos; (iii) and wound-healing in a spontaneous type II diabetic mouse model with a low capacity to regenerate skin. To analyze these aspects of tissue growth, maintenance, and regeneration, we used HBOT alone or in combination with cellular therapy. Specifically, Wharton Jelly Mesenchymal Stem cells (WJ-MSC) were embedded in a commercial collagen-scaffold. HBOT did not affect the metabolic rate of adult mice nor of chicken embryos. Notwithstanding, HBOT modified the proliferation rate of stem cells in the mice small intestinal crypts, increased angiogenesis in the CAM, and improved wound-healing and tissue repair in diabetic mice. Moreover, our study demonstrates that combining stem cell therapy and HBOT has a collaborative effect on wound-healing. In summary, our data underscore the importance of oxygen tension as a regulator of stem cell biology and support the potential use of oxygenation in clinical treatments.

5.
Stem Cell Res Ther ; 8(1): 203, 2017 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-28962669

RESUMEN

BACKGROUND: Wharton's jelly-derived mesenchymal stem cells (WJ-MSC) show remarkable therapeutic potential to repair tissue upon injury via paracrine signaling by secreting diverse trophic factors that promote angiogenesis. However, the mechanisms and signaling pathways that regulate the induction of these specific factors are still mostly unknown. Emerging evidence suggests that Sonic hedgehog (SHH) plays a central role in angiogenesis and tissue maintenance. However, its contribution to the angiogenic potential of MSC has not been fully addressed. The aim of this work was to characterize the expression of the SHH pathway components in WJ-MSC primary cultures and to evaluate their angiogenic responsiveness to SHH signaling. METHODS: Primary cell cultures obtained from human umbilical cords were treated with pharmacological modulators of the SHH pathway. We evaluated the modulation of diverse trophic factors in cell lysates, conditioned medium, and functional in vitro assays. In addition, we determined the angiogenic potential of the SHH pathway in the chicken chorioallantoic membrane, an in vivo model. RESULTS: Our results show that WJ-MSC express components of the canonical SHH pathway and are activated by its signaling. In fact, we provide evidence of basal autocrine/paracrine SHH signaling in WJ-MSC. SHH pathway stimulation promotes the secretion of angiogenic factors such as activin A, angiogenin, angiopoietin 1, granulocyte-macrophage colony-stimulating factor, matrix metallometallopeptidase -9, and urokinase-type plasminogen activator, enhancing the pro-angiogenic capabilities of WJ-MSC both in vitro and in vivo. CONCLUSION: WJ-MSC are a cell population responsive to SHH pathway stimulation. Basal SHH signaling is in part responsible for the angiogenic inductive properties of WJ-MSC. Overall, exogenous activation of the SHH pathway enhances the angiogenic properties of WJ-MSC, making this cell population an ideal target for treating tissue injury.


Asunto(s)
Proteínas Hedgehog/metabolismo , Células Madre Mesenquimatosas/citología , Neovascularización Fisiológica , Activinas/genética , Activinas/metabolismo , Angiopoyetina 1/genética , Angiopoyetina 1/metabolismo , Animales , Diferenciación Celular , Línea Celular , Células Cultivadas , Pollos , Femenino , Factor Estimulante de Colonias de Granulocitos y Macrófagos/genética , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Proteínas Hedgehog/genética , Humanos , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/metabolismo , Células Madre Mesenquimatosas/metabolismo , Ratones , Activadores Plasminogénicos/genética , Activadores Plasminogénicos/metabolismo , Transducción de Señal , Gelatina de Wharton/citología
6.
Stem Cells ; 35(12): 2430-2441, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28895234

RESUMEN

Novel bone regeneration approaches aim to obtain immature osteoblasts from somatic stem cells. Umbilical cord Wharton's jelly mesenchymal stem cells (WJ-MSCs) are an ideal source for cell therapy. Hence, the study of mechanisms involved in WJ-MSC osteoblastic differentiation is crucial to exploit their developmental capacity. Here, we have assessed epigenetic control of the Runt-related transcription factor 2 (RUNX2) osteogenic master regulator gene in WJ-MSC. We present evidence indicating that modulation of RUNX2 expression through preventing Jumonji AT-rich interactive domain 1B (JARID1B) histone demethylase activity is relevant to enhance WJ-MSC osteoblastic potential. Hence, JARID1B loss of function in WJ-MSC results in increased RUNX2/p57 expression. Our data highlight JARID1B activity as a novel target to modulate WJ-MSC osteoblastic differentiation with potential applications in bone tissue engineering. Stem Cells 2017;35:2430-2441.


Asunto(s)
Histona Demetilasas con Dominio de Jumonji/metabolismo , Células Madre Mesenquimatosas/metabolismo , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Epigenómica , Humanos , Histona Demetilasas con Dominio de Jumonji/genética , Células Madre Mesenquimatosas/citología , Osteoblastos/citología , Osteoblastos/metabolismo , Cordón Umbilical/citología , Gelatina de Wharton/citología
7.
Stem Cell Res Ther ; 8(1): 43, 2017 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-28241866

RESUMEN

BACKGROUND: Angiogenesis, the process in which new blood vessels are formed from preexisting ones, is highly dependent on the presence of classical angiogenic factors. Recent evidence suggests that axonal guidance proteins and their receptors can also act as angiogenic regulators. Netrin, a family of laminin-like proteins, specifically Netrin-1 and 4, act via DCC/Neogenin-1 and UNC5 class of receptors to promote or inhibit angiogenesis, depending on the physiological context. METHODS: Mesenchymal stem cells secrete a broad set of classical angiogenic factors. However, little is known about the expression of non-canonical angiogenic factors such as Netrin-1. The aim was to characterize the possible secretion of Netrin ligands by Wharton's jelly-derived mesenchymal stem cells (WJ-MSC). We evaluated if Netrin-1 presence in the conditioned media from these cells was capable of inducing angiogenesis both in vitro and in vivo, using human umbilical vein endothelial cells (HUVEC) and chicken chorioallantoic membrane (CAM), respectively. In addition, we investigated if the RhoA/ROCK pathway is responsible for the integration of Netrin signaling to control vessel formation. RESULTS: The paracrine angiogenic effect of the WJ-MSC-conditioned media is mediated at least in part by Netrin-1 given that pharmacological blockage of Netrin-1 in WJ-MSC resulted in diminished angiogenesis on HUVEC. When HUVEC were stimulated with exogenous Netrin-1 assayed at physiological concentrations (10-200 ng/mL), endothelial vascular migration occurred in a concentration-dependent manner. In line with our determination of Netrin-1 present in WJ-MSC-conditioned media we were able to obtain endothelial tubule formation even in the pg/mL range. Through CAM assays we validated that WJ-MSC-secreted Netrin-1 promotes an increased angiogenesis in vivo. Netrin-1, secreted by WJ-MSC, might mediate its angiogenic effect through specific cell surface receptors on the endothelium, such as UNC5b and/or integrin α6ß1, expressed in HUVEC. However, the angiogenic response of Netrin-1 seems not to be mediated through the RhoA/ROCK pathway. CONCLUSIONS: Thus, here we show that stromal production of Netrin-1 is a critical component of the vascular regulatory machinery. This signaling event may have deep implications in the modulation of several processes related to a number of diseases where angiogenesis plays a key role in vascular homeostasis.


Asunto(s)
Membrana Corioalantoides/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Neovascularización Fisiológica/efectos de los fármacos , Factores de Crecimiento Nervioso/farmacología , Proteínas Supresoras de Tumor/farmacología , Gelatina de Wharton/metabolismo , Animales , Bioensayo , Movimiento Celular , Embrión de Pollo , Membrana Corioalantoides/irrigación sanguínea , Membrana Corioalantoides/citología , Medios de Cultivo Condicionados/química , Medios de Cultivo Condicionados/farmacología , Relación Dosis-Respuesta a Droga , Regulación de la Expresión Génica , Células Endoteliales de la Vena Umbilical Humana/citología , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Integrina alfa6beta1/genética , Integrina alfa6beta1/metabolismo , Células Madre Mesenquimatosas/citología , Factores de Crecimiento Nervioso/genética , Factores de Crecimiento Nervioso/metabolismo , Receptores de Netrina , Netrina-1 , Cultivo Primario de Células , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Transducción de Señal , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Gelatina de Wharton/citología
8.
J Cell Physiol ; 232(9): 2519-2527, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27689934

RESUMEN

Wharton's Jelly mesenchymal stem cells (WJ-MSCs) are an attractive potential source of multipotent stem cells for bone tissue replacement therapies. However, the molecular mechanisms involved in their osteogenic conversion are poorly understood. Particularly, epigenetic control operating at the promoter regions of the two master regulators of the osteogenic program, RUNX2/P57 and SP7 has not yet been described in WJ-MSCs. Via quantitative PCR profiling and chromatin immunoprecipitation (ChIP) studies, here we analyze the ability of WJ-MSCs to engage osteoblast lineage. In undifferentiated WJ-MSCs, RUNX2/P57 P1, and SP7 promoters are found deprived of significant levels of the histone post-translational marks that are normally associated with transcriptionally active genes (H3ac, H3K27ac, and H3K4me3). Moreover, the RUNX2 P1 promoter lacks two relevant histone repressive marks (H3K9me3 and H3K27me3). Importantly, RUNX2 P1 promoter is found highly enriched in the H3K4me1 mark, which has been shown recently to mediate gene repression of key regulatory genes. Upon induction of WJ-MSCs osteogenic differentiation, we found that RUNX2/P57, but not SP7 gene expression is strongly activated, in a process that is accompanied by enrichment of activating histone marks (H3K4me3, H3ac, and H3K27ac) at the P1 promoter region. Histone mark analysis showed that SP7 gene promoter is robustly enriched in epigenetic repressive marks that may explain its poor transcriptional response to osteoblast differentiating media. Together, these results point to critical regulatory steps during epigenetic control of WJ-MSCs osteogenic lineage commitment that are relevant for future applications in regenerative medicine. J. Cell. Physiol. 232: 2519-2527, 2017. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Diferenciación Celular , Linaje de la Célula , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Epigénesis Genética , Células Madre Mesenquimatosas/metabolismo , Osteoblastos/metabolismo , Osteogénesis , Regiones Promotoras Genéticas , Factores de Transcripción/metabolismo , Transcriptoma , Gelatina de Wharton/metabolismo , Células Cultivadas , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Femenino , Regulación del Desarrollo de la Expresión Génica , Histonas/metabolismo , Humanos , Metilación , Fenotipo , Factor de Transcripción Sp7 , Factores de Transcripción/genética , Transcripción Genética , Activación Transcripcional , Gelatina de Wharton/citología
9.
Angiogenesis ; 17(4): 851-66, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24728929

RESUMEN

Disorders in skin wound healing are a major health problem that requires the development of innovative treatments. The use of biomaterials as an alternative of skin replacement has become relevant, but its use is still limited due to poor vascularization inside the scaffolds, resulting in insufficient oxygen and growth factors at the wound site. In this study, we have developed a cell-based wound therapy consisting of the application of collagen-based dermal scaffolds containing mesenchymal stem cells from Wharton's jelly (WJ-MSC) in an immunocompetent mouse model of angiogenesis. From our comparative study on the secretion profile between WJ-MSC and adipose tissue-derived MSC, we found a stronger expression of several well-characterized growth factors, such as VEGF-A, angiopoietin-1 and aFGF, which are directly linked to angiogenesis, in the culture supernatant of WJ-MSC, both on monolayer and 3D culture conditions. WJ-MSC proved to be angiogenic both in vitro and in vivo, through tubule formation and CAM assays, respectively. Moreover, WJ-MSC consistently improved the healing response in vivo in a mouse model of human-like dermal repair, by triggering angiogenesis and further providing a suitable matrix for wound repair, without altering the inflammatory response in the animals. Since these cells can be easily isolated, cultured with high expansion rates and cryopreserved, they represent an attractive stem cell source for their use in allogeneic cell transplant and tissue engineering.


Asunto(s)
Células Madre Mesenquimatosas/citología , Neovascularización Patológica , Regeneración/fisiología , Piel/metabolismo , Gelatina de Wharton/química , Adipocitos/citología , Animales , Materiales Biocompatibles , Proliferación Celular , Pollos , Membrana Corioalantoides , Criopreservación , Medios de Cultivo Condicionados , Citometría de Flujo , Humanos , Inflamación , Masculino , Ratones , Ratones Endogámicos BALB C , Osteogénesis , Proteoma , Piel/patología , Ingeniería de Tejidos , Cordón Umbilical/patología , Cicatrización de Heridas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...